原 著

空間群 Р1 における楕円体の最密充填

谷 ロ 友 彦 四條畷学園大学 リハビリテーション学部

キーワード

最密充填,楕円体, P1, 接触環境, 層構造

要 旨

空間群 $P\overline{1}$ (三斜晶系)に属する単位格子内に1個の楕円体をもった場合の最密充填構造を、マイクロソフト社製 Excel と VBA を使って調べた.最大充填率74.05%を与える16種の楕円体が存在する.これらの楕円体は異なった接触環境にあり、いずれも12個の楕円体と接触している.接触環境は格子軸の変換によって特定の接触環境に変えることができる.接触環境を層の積み重ねからみると、積み重ね方に2つのタイプがある.第1のタイプは層内において6個の楕円体と接触した楕円体が上の層と下の層とでそれぞれ3個の楕円体と接触し、第2のタイプは層内で4個の楕円体と接触した楕円体が上の層と下の層とでそれぞれ4個の楕円体と接触している.

1. はじめに

昭和20年代後半,パチンコゲームが大衆娯楽の市民権 を確立しようとした頃,遊技者の獲得した玉を数える道 具として,図1に示すような菱形の枡を使い,例えば, 38 個の球を数える場合,先ず枡の側壁に沿って10 個の 球を並べる.次に,並べた球の列に沿って現われる凹ん だ部分に隙間のないように順次はめ込み,2列目の球を 10 個並べる.同様にして3列目,4列目と並べて行き, 最後の4列目を満たすには2個足りないことから球数が 38 個であると数えた.図2は並べた球の1部を模式的に 示したもので,球は壁面に沿った方向(y方向とする) に加え,横方向(x方向とする)にも互いに接触して連

図1 パチンコ玉の数を数える枡

なり,その周期はx方向とy方向のいずれも球の半径の2倍となっている.ここで,x方向とy方向に連なった球の中心を繋ぐと図2の点線に示すような網目ができ,これに平行な球の層を考える.

図2 平面内での最も密な球の配列

次に,先の層にこれと同じ層を隙間が最も少なくなる ように重ねる.この操作を一定の方向(z方向)に沿っ て繰り返す.図3は3層積み重ねたときの様子を示した ものである.図4は図3に示した配列の基本単位を取り 出したもので,8個の球が菱面体と呼ばれる平行六面体 を形成する.この平行六面体を単位格子とし,格子軸の 軸変換により立方最密構造としてよく知られている面心

図3 3層重ねたときの球の配列

立方格子となり、例えば、金、銀、銅、アルミニウムな どの結晶構造でよく知られている.

図4に示す平行六面体を三斜晶系に属する格子と捉え, 単位格子の格子軸をベクトル*a*, *b*, *c*とし, 軸長を*a*, *b*, *c*で表し, *b*と*c*, *c*と*a*, *a*と*b*のなす軸角をそれぞれ *a*, *β*, γ で表す. 図4に示した球の配列の場合, 軸 長は全て球の半径の2倍となり, 軸角は全て 60°とな る. ここで, 球の半径を*r*とすると, 単位格子の体積 は4 $\sqrt{2}$ ·*r*³で与えられ, 球の体積は4 π *r*³/3で与えられ るから単位格子内に含まれる球の数が1個であることよ り, 充填率(球の体積÷単位格子の体積)は立方最密構 造のもつ74.05%となる.

図5は、球が互いに接している部分の断面図で、左図 は層内で球の接触する断面を表し、右図は層間で接触す る断面を表している. *X*, *Y*, *Z*は球 O の中心に原点を もつ直交系の座標軸で、ab 面に垂直に Z 軸をとり、X 軸 と Y 軸は ab 面内にあり X 軸は a に平行である.ここで、 層間距離を *d* とすると、図5 左図は *Z*=0 に中心をもつ 球の切断面で、層内の球の接触断面を表わし、右図は *Z*

図 4 層を重ねた場合の配列の基本単位(単位格子)と 格子軸

=d/2おける球の切断面で,層間の球の接触断面を表し ている.右図中,円CはZ=dに中心をもつ上層の球の 切断面を,また,これら以外の円はZ=0に中心をもつ 球の切断面を表している.層内接触断面において円Oは 周りの6個の円と接触し,周りの6個の円も互いに接触 している.格子の断面積に対する球の断面積の比は 90.69%と極めて高い密度を示している.このことより層 内では,球Oが周りの6個の球と極めて密に取り囲まれ ていることが分かる.

次に,層間接触断面 (Z= d/2 の面) では,Z=0 に中 心をもつ球は,Z=dに中心をもつ上の層の3個の球で挟 まれ,上層の球は Z=0 の層にある3 個の球に挟まれて いるが,図中 B と記した部分に空孔が現われる.この位 置は,立方最密構造の格子軸の中間位置に相当し,例え ば,NaClの結晶のような場合,球を Cl⁻イオンとする と Na⁺イオンは B で示した空孔に配置する.この空孔の 存在によって,層間接触断面では格子の断面積に対する

図 5 層内の球の接触断面(左図)と層間の接触断面(右図) 実線の菱形はいずれも接触断面における格子 の切断面である. C は上層の球の切断面を, B は空孔を表す.

球の断面積の比は 60.46%と層内接触断面に比べ可なり 小さくなっている.

ここでは、与えられた三斜晶系に属する格子に同じ配 向をもつ楕円体を詰め込みそのときの最密充填構造につ いて、マイクロソフト社製の Excel および VBA (Visual Basic for Application)を使って調べた結果について報 告する.

2. 楕円体の最密充填構造を求めるアルゴリズ ム

同じ配向をもつ楕円体が, x 軸, y 軸, z 軸方向に沿っ てそれぞれ *a*, *b*, *c*の周期で互いに接触して連なってい るものとする.この配列から得られる単位格子の格子軸 を表すベクトルを *a*, *b*, *c*とし, 格子の軸長を *a*, *b*, *c*, 軸角を *a*, β , γ で表す(図6参照).また,楕円体の 中心を格子の原点に置くと,楕円体自身に対称心を有し ていることからこの楕円体の作る構造は空間群 P_1 に属 する.この空間群のもつ対称要素は対称心のみで,その 位置を図7に示した.

図 6 斜交座標軸 *x*, *y*, *z* と単位格子の格子軸 **a**, **b**, **c**, 軸角 *α*, *β*, *γ*の関係

格子の原点にある楕円体 €。を次式のように表す.

 $\varepsilon_{0} = Ax^{2} + By^{2} + Cz^{2} + 2Dxy + 2Eyz + 2Fzx - 1 = 0$ (1)

ここに, *A, B, C, D, E, F* は楕円体を表す定数である. この楕円体に対して, x 方向, y 方向, z 方向にそれ ぞれ *p, q, r,* だけ平行移動した楕円体の式を次のよう に表わす.

$$\varepsilon = A(x-p)^{2} + B(y-q)^{2} + C(z-r)^{2} + 2D(x-p)$$

$$\times (y-q) + 2E(y-q)(z-r) + 2F(z-r)(x-p)$$

$$-1 = 0$$
(2)

これら2つの楕円体が接触するための条件は次式で与えられる¹⁾.

 $Ap^{2}+Bq^{2}+Cr^{2}+2Dpq+2Eqr+2Frp-4=0$ (3) このとき、二つの楕円体の接点座標は、(p/2, q/2, r/2) で与えられ、この座標は(1)式より楕円体 ϵ_{o} の表面上の 一点であることが分かる.また、楕円体 ϵ_{o} の中心を原点 に置いているため、p, q, r は格子点の位置を指し、楕 円体の接点は格子点の中間にある対称心の位置と一致す る (図 7 参照).表 1 に楕円体 ϵ_{o} の周りにある接触可能 な楕円体を示した.ただし、対称心で関係づけられるも

図7 空間群 P1 における対称要素 Oは対称心を表す。 ab 面内の対称心位置(上図), と ac 面内の対称心 位置(下図)

のは除いてある.

x方向, y方向, z方向に連なる楕円体がそれぞれの方 向で互いに接触していることから,楕円体 ε。に対して, x 方向に a だけ平行移動した楕円体 ε (a, 0, 0) との接点 は、x=a/2、y=z=0 で与えられる対称心の位置と一致 する.したがって2つの楕円体が接触する条件は(3)式よ り Aa²=4 となり, A=(2/a)²を得る. 同様に, y 方向に bだけ平行移動した楕円体 ϵ (0, b, 0)との接点は, v=b/2, x=z=0 で与えられる対称心の位置と一致し, 接触 条件は Bb²=4 となり, B=(2/b)²を得る. また, z方向 に c だけ進んだ楕円体 ϵ (0, 0, c) との接点は, z=c/2, x=y=0 で与えられる対称心の位置であり、接触条件は $Cc^{2}=4$ となり、 $C=(2/c)^{2}$ を得る.ここで、球の最密構 造の場合と同様に、これら3つの楕円体が楕円体 ε と必 ず接触するという条件を入れると, A, B, Cの値は格子 定数の軸長 a, b, c によって定まり, (3)式は次のよう に書き換えられる.

$$(2/a)^{2}p^{2} + (2/b)^{2}q^{2} + (2/c)^{2}r^{2} + 2Dpq + 2Eqr$$

+2Frp-4=0 (4)

ここで,接触する楕円体として先の3つの楕円体の外に

4番目の楕円体として ϵ (a, b, 0)を選ぶならば, 楕円体 ϵ_{o} との接点は x=a/2, y=b/2, z=0 で与えられる対称 心の位置であり,接触条件は,(4)より Dab=-2 を得る. また,4番目に接触する楕円体に ε(-a, b, 0)を選ぶな らば、楕円体 ϵ_{o} との接点は x=a/2, y=b/2, z=0 であ り, 接触条件は, (4)より Dab=2 を得る. 楕円体の回転 に寄与するパラメータの1つであるDはDabとして,2 *≧Dab≧-2*の範囲内で値を選ぶことにする. E, Fにつ いても同様に, Eは Ebc として ϵ (0, b, c) と ϵ (0, -b, c)とから 2 \geq *Ebc* \geq -2 の範囲内を,また, Fは *Fca* とし て、2≧*Fca*≧-2の範囲内選ぶことにする. 楕円体の回転 に寄与するパラメータ D, E, Fは、 $2 \ge Dab$ 、Ebc、Fca≧-2の範囲内で与えられる *Dab*, *Ebc*, *Fca*の値の組み 合わせを作り,楕円体 ε が表1に示した楕円体のいずれ とも互いに交わらないという条件を充たす組を探し出し, この条件を充たす楕円体の体積より充填率の最も大きい ものを見つけ出す.計算は, Dab, Ebc, Fca のそれぞ れについて-2~2までの値を 64 等分し,65×65×65 組の 値について最大の充填率を与える組を探した. 主たる計 算は VBA で行い,計算結果は Excel の Sheet 上に表示

した.計算に要した時間は 10 分以内であった (プロセッ サ: Intel 社製 Core 2 1.83 GHz CPU, メモリ: 2GB).

3. 計算結果

三斜晶系に属する単位格子は格子軸を選ぶ自由度が高 いため、計算モデル作成は軸長に $a \ge b \ge c$ の条件を、ま た軸角に 90 $\geq \alpha$, β , $\gamma > 0$ の条件を設けた. 最大充填率 は何れのモデルについても16個見つかり,その値は球の 立方最密構造と同じ 74.05%であった.表 2 に最大充填 率を与える 16 個の楕円体定数の組を Aa², Bb², Cc², Dab, Ebc, Fca の値で示した. この表より Dab, Ebc. Fcaのいずれもが-2,0,2のいずれかの値であり、これ らの値が格子の軸長、軸角に依存しないことも計算モデ ルより分かった.ここで、Dab=Ebc=Fca=|2|を与え る4組をType 1とし, *Dab*=0, *Ebc*=*Fca*=|2|を与え る 4 組を Type 2, *Ebc*=0, *Dab=Fca*=2004 組を Type 3, Dab=Ebc=|2|, Fca=0 を与える 4 組を Type 4 と した. 更に, 各 Type の 4 組には i, ii, iii, ivを付し, 16 種の楕円体について Type 1-i から Type 4-iv まで名 付けた.

表1 接触可能な楕円体

ε (a, 0, 0)	ε (0, b, 0)	ε (a, b, 0)	ε (-a, b, 0)	ε (0, 0, c)	ε (a, 0, c)
ϵ (a, b, c)	ε (a, -b, c)	ε (-a, b, c)	ε (-a, 0, c)	ϵ (0, b, c)	ε (0, -b, c)

()内は、x, y, z 軸方向への楕円体の平行移動量を表す。

表2 最大充填率 74.05%を与える楕円体定数

	Aa ²	Bb^2	Cc^2	Dab	Ebc	Fca
Type 1- i	4.00	4.00	4.00	2.00	2.00	2.00
Type 1- ii	4.00	4.00	4.00	-2.00	2.00	-2.00
Type 1-iii	4.00	4.00	4.00	-2.00	-2.00	2.00
Type 1-iv	4.00	4.00	4.00	2.00	-2.00	-2.00
Туре 2- і	4.00	4.00	4.00	0.00	2.00	2.00
Type 2- ii	4.00	4.00	4.00	0.00	2.00	-2.00
Type 2-iii	4.00	4.00	4.00	0.00	-2.00	2.00
Type 2-iv	4.00	4.00	4.00	0.00	-2.00	-2.00
Type 3- i	4.00	4.00	4.00	2.00	0.00	2.00
Type 3- ii	4.00	4.00	4.00	-2.00	0.00	-2.00
Type 3-iii	4.00	4.00	4.00	-2.00	0.00	2.00
Type 3-iv	4.00	4.00	4.00	2.00	0.00	-2.00
Type 4- i	4.00	4.00	4.00	2.00	2.00	0.00
Type 4- ii	4.00	4.00	4.00	-2.00	2.00	0.00
Type 4-iii	4.00	4.00	4.00	-2.00	-2.00	0.00
Type 4- iv	4.00	4.00	4.00	2.00	-2.00	0.00

四条畷学園大学 リハビリテーション学部紀要 第4号 2008

表 3 計算例 1:最大充填率 74.05%を与える楕円体

格子定数 :	<i>a</i> =13.000Å	<i>b</i> =10.000Å <i>c</i> =7	7.000\AA $\alpha = 75.0^{\circ}$	$\beta = 80.0^{\circ}$	γ =85.0°
計算時間:7	'42" Dal	, Ebc, Fca の組	l数: $65 \times 65 \times 65$ ($2 \geq Dab$,	<i>Ebc</i> , <i>Fca</i> \geq 2)
		主軸の長さ		休巷	丰而待比
	L_1	L_2	L_3	1441貝	衣田楨比
Type 1- i	8.157	5.431	3.451		1.128
Type 1- ii	9.064	5.459	3.090		1.209
Type 1-iii	8.646	6.334	2.792		1.226
Type 1-iv	8.385	6.900	2.642		1.247
Type 2- i	8.502	5.194	3.462		1.147
Type 2- ii	9.092	5.381	3.125		1.207
Type 2-iii	8.838	6.135	2.819		1.230
Type 2-iv	10.410	5.431	2.704	640.4	1.349
Туре 3- і	9.929	4.687	3.285		1.261
Type 3- ii	11.403	4.353	3.079		1.413
Type 3-iii	10.044	4.731	3.217		1.274
Type 3-iv	10.170	5.094	2.951		1.302
Type 4- i	9.275	4.824	3.417		1.203
Type 4- ii	9.497	4.786	3.364		1.222
Type 4-iii	10.841	4.993	2.825		1.372
Type 4- iv	9.454	5.844	2.767		1.272

表 4 計算例 2:最大充填率 74.05%を与える楕円体

格子定数 :	<i>a</i> =8.000Å <i>b</i> =	=8.000Å <i>c</i> =8.00	0 Å $\alpha = 60.0^{\circ}$	$\beta = 60.0^{\circ}$ γ	$=60.0^{\circ}$
計算時間:9	07"	<i>DEF</i> の組数 : 65>	${\color{red} imes 65 imes 65}$ ($2 \geq 1$	<i>D</i> ab, <i>E</i> bc, <i>F</i> ca	\geq -2)
主軸の長さ					まご徒い
	L_1	L_2	L_3	— 1421貝	衣囬楨比
Type 1- i	4.000	4.000	4.000		1.000
Type 1- ii					
Type 1-iii	7.727	4.000	2.071		1.334
Type 1-iv					
Туре 2- і	5.657	4.000	2.828	_	1.082
Type 2- ii	7 1 40	4.000	2.241		1.250
Type 2-iii	7.140		2.241		1.250
Type 2- iv	10.355	2.828	2.185	2(0.1	1.723
Туре 3- і	5.657	4.000	2.828	- 260.1	1.082
Туре 3- іі	10.355	2.828	2.185		1.723
Type 3-iii	7 1 40	4 000	2.2.11		1.250
Type 3-iv	/.140	4.000	2.241		1.250
Type 4- i	5.657	4.000	2.828		1.082
Type 4- ii	7.140	4.000	2.241		1.250
Type 4-iii	10.355	2.828	2.185		1.723
Type 4- iv	7.140	4.000	2.241		1.250

四条畷学園大学 リハビリテーション学部紀要 第4号 2008

Type 1- i	ε (a, 0, 0)	ε (0, b, 0)	$\epsilon (0, 0, c)$	ε (a, -b, 0)	ε (-a, 0, c)	ε (0, -b, c)
Type 1- ii	ε (a, 0, 0)	ε (0, b, 0)	ε (0, 0, c)	ε (a, b, 0)	ε (a, 0, c)	ε (0, -b, c)
Type 1-iii	ε (a, 0, 0)	ε (0, b, 0)	ε (0, 0, c)	ε (a, b, 0)	ε (-a, 0, c)	ε (0, b, c)
Type 1-iv	ε (a, 0, 0)	ε (0, b, 0)	ε (0, 0, c)	ε (a, -b, 0)	ε (a, 0, c)	ε (0, b, c)
Туре 2- і	ε (a, 0, 0)	ε (0, b, 0)	$\epsilon (0, 0, c)$	ε (-a, 0, c)	ε (0, -b, c)	ε (-a, -b, c)
Type 2- ii	ε (a, 0, 0)	ε (0, b, 0)	ε (0, 0, c)	ε (a, 0, c)	ε (0, -b, c)	ε (a, -b, c)
Type 2-iii	ε (a, 0, 0)	ε (0, b, 0)	ε (0, 0, c)	ε (-a, 0, c)	ε (0, b, c)	ε (-a, b, c)
Type 2-iv	ε (a, 0, 0)	ε (0, b, 0)	ε (0, 0, c)	ε (a, 0, c)	ε (0, b, c)	ε (a, b, c)
Туре 3- і	ε (a, 0, 0)	ε (0, b, 0)	$\epsilon (0, 0, c)$	ε (a, -b, 0)	ε (-a, 0, c)	ε (-a, b, c)
Туре 3- іі	ε (a, 0, 0)	ε (0, b, 0)	ε (0, 0, c)	ε (a, b, 0)	ε (a, 0, c)	ε (a, b, c)
Type 3-iii	ε (a, 0, 0)	ε (0, b, 0)	ε (0, 0, c)	ε (a, b, 0)	ε (-a, 0, c)	ε (-a, -b, c)
Type 3-iv	ε (a, 0, 0)	ε (0, b, 0)	ε (0, 0, c)	ε (a, -b, 0)	ε (a, 0, c)	ε (a, -b, c)
Type 4- i	ε (a, 0, 0)	ε (0, b, 0)	ε (0, 0, c)	ε (a, -b, 0)	ε (0, -b, c)	ε (a, -b, c)
Type 4- ii	ε (a, 0, 0)	ε (0, b, 0)	ε (0, 0, c)	ε (a, b, 0)	ε (0, -b, c)	ε (-a, -b, c)
Type 4-iii	ε (a, 0, 0)	ε (0, b, 0)	ε (0, 0, c)	ε (a, b, 0)	ε (0, b, c)	ε (a, b, c)
Type 4- iv	ε (a, 0, 0)	ε (0, b, 0)	ε (0, 0, c)	ε (a, -b, 0)	ε (0, b, c)	ε (-a, b, c)

表5 16 タイプの楕円体接触環境

表3は、一般的な三斜晶系に属する格子の計算例を示 したもので、楕円体の主軸の長さ L_1 , L_2 , L_3 および体 積,表面積比を表した.表面積比は楕円体の軸比を表す 指標として、同じ体積をもつ球の表面積に対する比率で 表した.この表から、16タイプの楕円体の体積は同じで あるが、軸長、表面積比が全て異なることを示しており、 同じ格子に最大充填率を与える楕円体が 16 種類あるこ とが分かった.

表4は球の最密充填を与える格子定数の場合で,格子 定数がa=b=c=8Å, $a=\beta=\gamma=60^{\circ}$ と特殊な例であ る.このため解となる楕円体は11種類に減少した.特に, Type 1-iは $Aa^2=Bb^2=Cc^2=4$,Dab=Ebc=Fca=2の場合で,楕円体の3つの主軸の長さが等しく,表面積 比も1となることより球を表していることが分かる.こ れ以外のタイプは全て楕円体であった.

表 5 は、16 種の楕円体の充填について、楕円体 ε_{o} に 接触する楕円体を示したもので、全て 6 個の楕円体と接 触しており、この 6 個の楕円体と対称心で関係づけられ る楕円体を含めると、12 個の楕円体と接触していること になる.接触する楕円体は各タイプによって異なり、例 えば、Type 1-i と Type 1-iiの接触環境の違いをみる と、前者の ε (a, -b, 0) と ε (-a, 0, c) がそれぞれ 後者では ε (a, b, 0) と ε (a, 0, c) となり、この接 触環境の違いが楕円体の形の違いとなって現れていると 考えられる.

4. 最密充填における接触環境

三斜晶系に属する格子の格子軸の採り方に高い自由度 をもつこと、および計算例2で得られた楕円体のうちの Type 1-iが球であることから16種の接触環境をType 1-iを基準とし、これらの関連を調べてみた.表6は格 子軸の変換による接触環境の変化を表したものである. 表6(a)は元の格子軸のうち1軸の向きを逆向きに採った 場合と格子軸のうちいずれか2軸を交換する場合で、こ れらの軸変換によって格子の形は変わらない.表6(b) は格子軸の1 軸を対角方向に採る場合で、この変換に よって格子の形が変わる.ここで、格子軸 a, b, cに対 して変換後の格子軸を a', b', c' とし、これらの格 子定数を a', b', c', a', β' , γ' で表すこと にする

まず、1 軸の向きを逆向きに採った場合の接触環境の 変化について調べる(表 6(a)参照). Type 1-ii で a 軸 の向きを a' = -a と逆向きに採ると、軸長に変化はない が、軸角 β' が β の補角 180- β に、また γ' が γ の補角 180- γ に変わり、格子定数は次のように与えられる.

a' = a, b' = b, c' = c,

 $\alpha' = \alpha, \beta' = 180 - \beta, \gamma' = 180 - \gamma$ この軸変換によって接触する楕円体のうち ϵ (a, b, 0) と ϵ (a, 0, c) がそれぞれ ϵ (-a, b, 0) と ϵ (-a, 0, c) に変り,対称心の関係にある楕円体を考慮すると Type 1-i と同じ接触環境に変わる.

表6 軸変換による接触環境の変化

(a) 軸変換によって格子が変わらない場合

接触環境	軸の反転*	接触環境	軸の交換	接触環境
Type 1- i				
Type 1- ii	T1			Trmo 1. ;
Type 1-iii	Τ2			Type 1-1
Type 1-iv	T 3			
Type 2- i				
Type 2- ii	T1			
Type 2-iii	T2			
Type 2-iv	Т3			
Type 3- i				
Type 3- ii	T1	Theme 9 i	-) I) I	
Type 3-iii	T2	Type 5-1	<i>a-c, d-d, c-a</i>	Type 2-1
Type 3-iv	Т3			
Type 4- i				
Type 4- ii	T1	Trmo 4-i	d = a k = a d = b	
Type 4-iii	T2	Type 4-1	a-a, D=C, C=D	
Type 4-iv	Т3			
* T1:	$a^{\prime} = a$ $b^{\prime} = b$	$\vec{c} = c$		

* T1: a' = -a, b' = -b, c' = cT2: a' = a, b' = -b, c' = cT3: a' = a, b' = b, c' = -c

(b) 軸変換によって格子が変わる場合

接触環境	軸変換	接触環境
Type 2- i	a' = -a+c, b' = b, c' = c	
Type 3- i	$\mathbf{a}' = \mathbf{a}, \ \mathbf{b}' = \mathbf{a} - \mathbf{b}, \ \mathbf{c}' = \mathbf{c}_1$	Type 1- i
Type 4- i	$\vec{a} = \vec{a}, \ \vec{b} = \vec{b}, \ \vec{c} = \vec{b} \cdot \vec{c}$	

同様に、Type 1-iiiは、b'=-b によって、変換後の格
 子定数は次のように与えられ、

a' = a, b' = b, c' = c,

 $\alpha' = 180 - \alpha, \beta' = \beta, \gamma' = 180 - \gamma$

この軸変換によって接触する楕円体のうち ϵ (a, b, 0) と ϵ (0, b, c) がそれぞれ ϵ (a, -b, 0) と ϵ (0, -b, c) に変り,対称心の関係にあるものを考慮するとType 1iと同じ接触環境に変わる.

また, Type 1-ivは, *c*'=-*c*によって, 変換後の格子 定数は次のように与えられ,

a' = a, b' = b, c' = c,

 $\alpha' = 180 - \alpha, \beta' = 180 - \beta, \gamma' = \gamma$

この軸変換によって接触する楕円体のうち ϵ (a, 0, c) $n \epsilon$ (0, 0, a), ϵ (c, 0, 0), と ϵ (0, b, c) がそれぞれ ϵ (a, 0, -c) と ϵ (0, b, -c) -a) に変り,対称心の関係にあ に変り,対称心の関係にあるものを考慮すると Type 1- 2-i と同じ接触環境に変わる.

i と同じ接触環境に変わる. 同様の軸変換を Type 2,
 Type 3, Type 4 に属する ii , iii, ivについて行うと,
 これらの接触環境はそれぞれの属する i と同じ接触環境
 に変わる(表 6(a)参照).

次に,格子軸の交換による接触環境の変化について調 べる(表 6(a)参照). Type 3-iの格子軸について, a 軸とc軸を a' = c, c' = aのように交換すると格子定数 は次のように与えられる.

a' = c, b' = b, c' = a,

 $\alpha' = \gamma, \beta' = \beta, \gamma' = \alpha$

この軸変換によって接触する楕円体のうち ϵ (a, 0, 0), ϵ (0, 0, c), ϵ (a, -b, 0), ϵ (-a, b, c) は, それぞ れ ϵ (0, 0, a), ϵ (c, 0, 0), ϵ (0, -b, a), ϵ (c, b, -a) に変り, 対称心の関係にあるものを考慮すると Type 2- i と同じ接触環境に変わる. Type 4-i は b 軸と c 軸を b' = c, c' = b のように交 換すると格子定数は次のように与えられる.

a' = a, b' = c, c' = b,

 $\alpha' = \alpha, \beta' = \gamma, \gamma' = \beta$

この軸変換によって接触する楕円体のうち ϵ (0, b, 0), ϵ (0, 0, c), ϵ (a, -b, 0), ϵ (a, -b, c) がそれぞ れ ϵ (0, 0, b), ϵ (0, c, 0), ϵ (a, 0, -b), ϵ (a, c, -b)に変り,対称心の関係にあるものを考慮すると Type 2-i と同じ接触環境に変わる.

ここまで述べてきた接触環境の変化は、軸変換によっ て単位格子の形に変化を与えなかった.このため変換さ れた格子定数により得られる最密充填を与える 16 の楕 円体は、格子軸の変換に伴う接触環境の違いは認められ るが、元の格子から得られるものと全て同じであった.

表 6(b) に示すように,格子軸のうち1 軸を対角方向に 採るような軸変換の場合,単位格子の形に変化が現れる. まず, Type 2-i の場合,1 軸をa' = -a + cに採り,他 の2 軸については元のb' = b, c' = cを採った場合, 変換後の格子軸は次のように与えられる.

a' = |-a+c|, b' = b, c' = c,

 $a' = \alpha$, $\beta' = \cos^{-1}[(-a \cdot \cos \beta + c)/a']$,

 $\gamma' = \cos^{-1}[(-a \cdot \cos \gamma + c \cdot \cos \alpha) / a']$

ここに、|-**a**+**c**|はベクトル-**a**+**c**の絶対値を表し、この ベクトルの大きさは次のように与えられる.

 $|-a+c| = (a^2+c^2-2 \ a \ c \cdot \cos \beta)^{1/2}$

この格子定数に対して表 5 に示す 6 個の接触楕円体 ϵ (a, 0, 0), ϵ (0, b, 0), ϵ (0, 0, c), ϵ (-a, 0, c), ϵ (0, -b, c), ϵ (-a, -b, c) は, それぞれ ϵ (-a', 0, c'), ϵ (0, b', 0), ϵ (0, 0, c'), ϵ (a', 0, 0), ϵ (0, -b', c'), ϵ (a', -b', 0) に変り, Type 1- i と同 等の接触環境を得る.

また, **Type** 3-i の場合, 格子軸を**b'=a-b**に採り, 他の2軸を元の軸のままにすると,変換後の格子定数は 次のように与えられる

 $a' = a, b' = |\mathbf{a} - \mathbf{b}|, c' = c,$

 $a' = \cos^{-1}[(a \cdot \cos \beta - b \cdot \cos \alpha)/b'], \quad \beta' = \beta,$ $\gamma' = \cos^{-1}[(a - b \cdot \cos \gamma)/b']$

ここに、 |**a**-**b**|はベクトル **a**-**b**の絶対値で、このベクトルの大きさは次式で与えられる.

 $|\boldsymbol{a}-\boldsymbol{b}|=(\boldsymbol{a}^2+\boldsymbol{b}^2-2\boldsymbol{a}\ \boldsymbol{b}\cdot\cos\gamma)^{1/2}$

この格子定数に対する Type 3-i にみられる接触楕円体 ϵ (a, 0, 0), ϵ (0, b, 0), ϵ (0, 0, c), ϵ (a, -b, 0), ϵ (-a, 0, c), ϵ (-a, b, c) は, それぞれ ϵ (a', 0, 0),

ε (a', -b', 0), ε (0, 0, c'), ε (0, b', 0), ε
(-a', 0, c'), ε (0, -b', c') に変り, Type 1i と同等の接触環境を得る.

同様に、Type 4-iの場合、格子軸を c'=b-c に採 り、他の2軸を元の軸のままにすると、変換後の格子定 数は次のように与えられる

a' = a, b' = b, c' = |**b**-**c**|,

 $a' = \cos^{-1}[(b-c\cdot\cos\alpha)/c'],$

 $\beta' = \cos^{-1}[(b \cdot \cos \gamma - c \cdot \cos \beta)/c'], \gamma' = \gamma$ ここに, |**b**-c|はベクトル b-cの絶対値で, このベクト ルの大きさは次式で与えられる.

 $|\mathbf{b}-\mathbf{c}| = (b^2 + c^2 - 2 \ b \ c \cdot \cos \alpha)^{1/2}$

この格子定数に対する Type 4-i にみられる接触楕円体 ϵ (a, 0, 0), ϵ (0, b, 0), ϵ (0, 0, c), ϵ (a, -b, 0), ϵ (0, -b, c), ϵ (a, -b, c) はそれぞれ ϵ (a', 0, 0), ϵ (0, b', 0), ϵ (0, b', -c'), ϵ (a', -b', 0), ϵ (0, 0, c'), ϵ (a', 0, c') に変り, 軸変換によっ て Type 1-i と同等の接触環境を得る.

Type 2-i, Type 3-i, Type 4-iから Type 1-iへの接触環境の変化が元の格子に対して1軸を対角方向に 採ることにより実現するが、この場合、格子の形が変わ るため変換後の格子定数によって生ずる 16 の楕円体に 元の格子と異なった楕円体が現われた.以上のことから、 Type 1 に見られる 4 つの接触環境と Type 2, Type 3, Type 4 に見られる 12 の接触環境とは与えられた格子に 対して互いに独立したものであると考えられる.

5. 層構造からみた接触環境

4 で述べたように楕円体の接触環境が, Type 1 に属す るものと他の Type 2, Type 3, Type 4 に属するものと は独立したものと考え, この違いを楕円体の作る層の積 み重ねから調べた.表7は,表5 に示した接触楕円体を 層構造の考えから対称心で関係づけられる楕円体を考慮 して再編成したものである.この表に掲げた ab-層, bc-層, ca-層はそれぞれ次のように定めた.ab-層は a 軸と b 軸の作る平面に平行な層を表し, bc-層は b 軸と c 軸の 作る平面に平行な層を,また ca-層は c 軸と a 軸の作る 平面に平行な層を,また ca-層は c 軸と a 軸の作る 平面に平行な層を表わす.表7は, Type 1-i, Type 2i, Type 3-i, Type 4-iについて, ab-層, bc-層, ca-層に分け,それぞれの層について層内と層間で接触す る楕円体を示した.

Type 1-i の充填を **ab**-層の重なりから楕円体の接触 をみると, 層内では表7に示した3個の楕円体とこれら

四条畷学園大学 リハビリテーション学部紀要 第4号 2008

	屠肉挖触捲田休				ト屋との	按舳掏田休	
	/1	雪P11女/四个月门1	μ μ		工僧との	好 照 作 门 仲	
Type 1- i							
ab-層	ε (a, 0, 0)	ε (0, b, 0)	ε (a, -b, 0)	ε (0, 0, c)	ε (-a, 0, c)	ε (0, -b, c)	
bc-層	ε (0, b, 0)	$\varepsilon (0, 0, c)$	ε (0, -b, c)	ε (a, 0 0)	ε (a, -b, 0)	ε (a, 0, -c)	
ca-層	ε (a, 0, 0)	ε (0, 0, c)	ε (-a, 0, c)	ε (0, b, 0)	ε (-a , b, 0)	ε (0, b, -c)	
Type 2- i							
ab-層	ε (a, 0, 0)	ε (0, b, 0)		ε (0, 0, c)	ε (-a, 0, c)	ε (0, -b, c)	ε (-a, -b, c)
bc-層	ε (0, b, 0)	ε (0, 0, c)	ε (0, -b, c)	ε (a, 0, 0)	ε (a, 0, -c)	ε (a, b, -c)	
ca-層	ε (a, 0, 0)	ε (0, 0, c)	ε (-a, 0, c)	ε (0, b, 0)	ε (0, b, -c)	ε (a, b, -c)	
Type 3- i							
ab-層	ε (a, 0, 0)	ε (0, b, 0)	ε (a, -b, 0)	ε (0, 0, c)	ε (-a, 0, c)	ε (-a, b, c)	
bc-層	ε (0, b, 0)	$\epsilon (0, 0, c)$		ε (a, 0, 0)	ε (a, -b, 0)	ε (a, 0, -c)	ε (a, -b, -c)
ca-層	ε (a, 0, 0)	ε (0, 0, c)	ε (-a, 0, c)	ε (0, b, 0)	ε (-a, b, 0)	ε (-a, b, c)	
Type 4- i							
ab-層	ε (a, 0, 0)	ε (0, b, 0)	ε (a, -b, 0)	ε (0, 0, c)	ε (0, -b, c)	ε (a, -b, c)	
bc-層	ε (0, b, 0)	$\epsilon (0, 0, c)$	ε (0, -b, c)	ε (a, 0, 0)	ε (a, -b, 0)	ε (a, -b, c)	
ca-層	ε (a, 0, 0)	ε (0, 0, c)		ε (0, b, 0)	ε (-a, b, 0)	ε (0, b, -c)	ε (-a, b, -c)

表7 各層からみた楕円体の層内および層間接触環境

(b) 層間接触断面

と対称心によって関係づけられる ε (-a, 0, 0), ε (0, -b, 0), ε (-a, b, 0) の 3 個の計 6 個の楕円体のいずれと も接触している (図 8(a)参照). 層間では表 7 に示した 上の層にある 3 個とこれらと対称心で関係づけられる下 の層の ε (0, 0, -c), ε (a, 0, -c), ε (0, b, -c) で挟 まれていることが分かる. 図 8(b) は上の層との層間接触 断面を表わしたもので, C および C_{1~3} は上の層の楕円体 の切断面を表したもので, 特に, C₁, C₂, C₃ で表した楕

円はそれぞれ ϵ (0, 0, c), ϵ (-a, 0, c), ϵ (0, -b, c) の切断面を表わしている.これら以外の楕円は層内の楕 円体の切断面を表している.この図より,層内の楕円体 が上の層の3個の楕円体に取り囲まれるように接触し, 逆に,層内の3個の楕円体が上の層の楕円体を取り囲む ように接触している.また,接触する2層内からそれぞ れ3個ずつの楕円体が接触断面内で交互に接触して六員 環を作り,その中央に B と記した空孔を作っている(図 8(b)参照). この断面において格子枠の面積に対する楕 円の占める割合が層内での90.69%に比べて60.46%と極 めて小さくなっている.

また, bc-層の積み重ねから楕円体の接触をみると, 層 内では表7に示した3個と,これらと対称心で関係づけ られる ϵ (0, -b, 0), ϵ (0, 0, -c), ϵ (0, b, -c) の3 個の計6個の楕円体で囲まれ,更に,層間ではこれも表 7に示した上の層の3個と,これらと対称心で関係づけ られる下の層の ϵ (-a, 0, 0), ϵ (-a, b, 0), ϵ (-a, 0, c)で挟まれていることが分かる(表7参照).

同様に、ca-層の積み重ねから楕円体の接触をみると、 層内では表7に示した3個と、これらと対称心で関係ず づけられる ϵ (-a, 0, 0)、 ϵ (0, 0, -c)、 ϵ (a, 0, -c) との6個で囲まれ、更に、層間ではこれも表7に示した 上の層の3個と、これらと対称心で関係づけられる下の 層の ϵ (0, -b, 0)、 ϵ (a, -b, 0)、 ϵ (0, -b, c)で挟ま れていることが分かる(表7参照).以上のことより、 Type 1-iでは、層の積み重ねからみた場合、何れの層 からみても、層内では6個、層間では上の層の3個と下 の層の3個の楕円体と接触し、合計12個の楕円体と接触 することが分かった.また、Type 1 に属する他のii, iii, ivも Type 1-i と同様の層の接触関係をもっている ことが分かった.

次に, Type 2-i の場合, bc-層および ca-層の重なり からみた楕円体の接触は, Type 1-i と同様に層内では 6個の楕円体と、また、層間では上層の3個とこれらと 対称心で関係づけられる下層の3個とで接触している (表 7 参照). しかし, ab-層の重なりから楕円体の接 触をみると、層内では表7に示した2個にこれらと対称 心によって関係づけられる ϵ (-a, 0, 0), ϵ (0, -b, 0) の2個の計4個の楕円体と接触して囲まれている(図 9(a)参照). 層間では表7で示した上の層にある4個と これらが対称心で関係づけられる下の層の ϵ (0, 0, -c), ε(a, 0, -c), ε(0, b, -c), ε(a, b, -c) で挟まれ ていることが分かる.図9(b)は上の層との層間接触断面 を表しており、 C_1 、 C_2 、 C_3 、 C_4 で表した楕円はそれぞれ ε (0, 0, c), ε (-a, 0, c), ε (0, -b, c), ε (-a, -b, c) の切断面を表している. この図より層内の楕円体は上 の層の4個によって取り囲まれるように接触し、逆に、 層内の4個の楕円体が上層の楕円体を取り囲むように接 触し、両層の楕円体が互いの窪みに挿し込んだ状態にあ る. また, Type 1-iの ab-層の層間接触のような空孔 は現れていない. この断面において格子枠の面積に対す る楕円の占める割合は,層内および層間のいずれも 78.54%であった.

Type 3- iを bc-層の重なりから,また Type 4- iを ca-層の重なりからみると,Type 2- iの ab-層の重なり と同様に層内では4個の楕円体と接触し,層間では上層 で4個と下層で4個と接触している.しかし,Type 2iの ab-層,Type 3- iの bc-層,Type 4- iの ca-層以

図 9 Type 2-iの ab 層でみた楕円体の接触断面.
 は上の層にある楕円体の切断面を表す.

外の層の重なりからみると、いずれも層内で6個の楕円 体と接触し、層間では上層と下層でそれぞれ3個の楕円 体と接触し、上層と下層の楕円体は互いに対称心で関係 づけられている.

以上のように 16 種の楕円体の充填構造を層構造から みた場合の楕円体の接触は, Type 1-iの ab-層などで みられるように層内で6個の楕円体と接触した楕円体が 層間では上層と下層でそれぞれ3個の楕円体と接触する 型と Type 2-iの ab-層などでみられるように層内では 4 個のみの楕円体と接触し, 層間でも上層と下層で4 個 ずつ接触する型のあることが分かった.

参考文献

1. Y. TAKAKI Mem Osaka Gakugei Univ. B14, 39-47(1965)

Closest Packing of Ellipsoid in Space Group $P\overline{1}$

Tomohiko Taniguchi Shijonawate Gakuen University, Faculty of Rehabilitation

Key Words

Closest packing, ellipsoid, $P\overline{1}$, contact environment, layer structure

Abstract

The closest packing structure when having 1 ellipsoid in the unit cell which belongs to space group $P\overline{1}$ (Triclinic system), was checked using Excel made by Microsoft Corporation and VBA. 16 kinds of ellipsoid to which the closest packing rate 74.05% is given exist. These ellipsoids contact with 12 ellipsoids both in the different contact environments. It's possible to change the contact environment to the specific contact environment by a change in an axis of unit cell. When we look at the contact environments from stacking of layers, there are 2 types in stacking of layers. In the 1st type, the ellipsoid contacts with 6 ellipsoids in the layer and with 3 ellipsoids in an upper layer and a lower layer respectively. In the second type, the ellipsoid contacts with 4 ellipsoids in the layer and with 4 ellipsoids in an upper layer and a lower layer respectively.